

Fabrication of Multi-layered Crosslinked Functional Electrospun Nanoscaffolds as Substrates for Cell Culture

<u>Amalia Miranda¹</u>, Driton VIIasaliu¹, Rocio Teresa Martinez-Nunez², Bahijja Tolulope Raimi-Abraham¹

¹School of Cancer and Pharmaceutical Sciences, Institute of Pharmaceutical Science, King's College London, London, UK ²School of Immunology & Microbial Sciences, Department of Infectious Diseases, King's College London, London, UK

BACKGROUND

Electrospun nanofibres have been utilised in tissue engineering as nanoscaffolds due to their potential to mimic the structural and functional role of the extracellular matrix (ECM) architecture ¹. Electrospun nanofibres can be generated as single, bi- or multi-layered systems. Multilayered Nanofibre can improve the porosity, pore diameter and mechanical properties than the single inner layer ².

AIM

To fabricate multi-layered crosslinked functional electrospun nanoscaffolds with both synthetic and natural polymers that can serve as highlight versatile and biocompatible substrates for tissue engineering applications.

Nanofibrous Matt Thickness

RESULTS

Scanning Electron Microscopy

Nanofibre Diameter

Mono-layered Tri-layered Bi-layered PVA-Pectin-P407/PCL/PVA PCL **PVA-Pectin-P407** PVA-Pectin-P407/PCL Pectin-P407 546.45 µm ± 28.74 79.26 µm ± 5.72 98.96 µm ± 25.96 1242.17 µm ± 52.7 Magn : 145x Magn : 380x Magn : 300x Magn : 295x

Figure 2. SEM images of electrospun nanoscaffolds and matt thickness

measurement

803.788 µm ± 973.79

Magn : 195x

All formula produced nanofibre with good morphology (without beads) with the fibre diameter within nanosize range. Bi-layered nanofiber create a thicker layer than the Tri-layered nanofiber, for non-crosslinked both and This crosslinked formula. indicates the effect of additional layer of PVA-Pectin-P407 to make the structure of nanofiber more compact thus reducing the

thickness.

Figure 1. SEM images of electrospun nanoscaffolds generated and nanofibre diameter measurement

Moisture Content and Porosity

Table 1. Moisture Content and Porosity of Nanoscaffolds

	Layer-type	Sample Name	Moisture Content	Porosity	All nanofił
Non-Crosslinked	Mono-layered	PVA-Pectin-P407	0.98%	72.32%	moistu
		PCL	1.96%	94.43%	high p
	Bi-layered	PVA-Pectin-P407/PCL	1.03%	86.71%	additio
	Tri-layered	PVA-Pectin-P407/PCL/PVA- Pectin-P407	2.07%	84.59%	agent multila
Crosslinked	Mono-layered	PVA-Pectin-P407	2.16%	83.63%	moistu
	Bi-layered	PVA-Pectin-P407/PCL	2.52%	85.31%	nanofil
	Tri-layered	PVA-Pectin-P407/PCL/PVA- Pectin-P407	2.72%	84.62%	nanofil

Cell Viability

produced formula with the low ber ire content (<3%) and porosity (>70%). The crosslinking Of n formation of and the iyer increase content Ire Of ber and enhance the ibrous matt porosity.

<u>**Attenuated Total Reflection – Fourier Transform Infrared Spectroscopy</u>**</u>

510.05 µm ± 132.97

Magn : 195x

Figure 3. FTIR Spectra of (A) Nanoscaffold Raw Material; (B) Non-Crosslinked multilayer Nanoscaffolds; (C) Crosslinked Multilayer Nanoscaffolds

The FTIR Spectra clearly demonstrate occurrence of principal peak from raw material of both non-crosslinked and crosslinked formula of the multilayer nanofibre. The respective surface also shows the formation of layer which is in accordance with the design of each type of multilayer.

CONCLUSION

Figure 4. The mean fluorescence indicating the THP-1 cell viability when cultured on the samples

Cell proliferation is improved by the addition of nanofibre, with non-crosslinked formula giving a better improvement than crosslinked formula. PVA-Pectin-P407 induce the proliferation better than PCL.Trilayer non-crosslinked nanofibre produce the highest cell proliferation. Multi-layered non-crosslinked formula suggests an improved biocompatibility when compared to single layer and crosslinked formula.

In conclusion, the multi-layered and crosslinked electrospun nanoscaffold from PVA, pectin, P407, and PCL was effectively created with improved properties and suitability for the cells compared to the single-layered nanoscaffold. An implication of this research is the potential of developing the multi-layered design of nanoscaffolds that would offer superior biomimicry as synthetic ECM in the extensive field of tissue engineering.

REFERENCES

- 1. Xue, J.; Wu, T.; Dai, Y.; Xia, Y. Electrospinning and Electrospun Nanofibers: Methods, Materials, and Applications. *Chemical reviews* **2019**, *119* (8), 5298. https://doi.org/10.1021/acs.chemrev.8b00593.
- Wu, T.; Zheng, H.; Chen, J.; Wang, Y.; Sun, B.; Morsi, Y.; El-Hamshary, H.; Al-Deyab, S. S.; Chen, C.; Mo, X. Application of a Bilayer Tubular Scaffold Based on Electrospun Poly(I-Lactide-Co-Caprolactone)/Collagen Fibers and Yarns for Tracheal Tissue Engineering. *Journal of Materials Chemistry B* 2017, 5 (1), 139–150. https://doi.org/10.1039/c6tb02484j.

Some illustrations created with BioRender.com

